logo librairie

CONNEXION



Mot de passe oublié?
Inscription
image mon panier
image TangenteMag

image Tangente Education
image Jouer Bridge
image logo Club Tangente


POLE
Bibliothèque Tangente
2009
162 pages
ISBN:9782848841052

19,80 €

Bib 36 - Le cercle

Collectif Tangente

Présentation

SOMMAIRE


Dossier 1 : Cercles entre eux

Le cercle, ou la perfection faite courbe, est à l'origine de problèmes millénaires: décimales de 𝝅, constructions à la règle et au compas, quadratures… à l'origine d'invariants fascinants ( angles, inscrits, puissance d'un point…), le cercle n'a pas fini de nous faire rêver!

La mesure du cercle / Un théorème de Thalès ou de Pythagore ? / Cercles : des courbes qui ne manquent pas d'aire / Un invariant de Steiner / Les faisceaux de cercles / Des chaînes de théorèmes / Arcs -en-ciel / Constructions au compas seul

Dossier 2 : Catalogue de cercles

Dès que trois points ne sont pas alignés, ils sont sur un même cercle. On comprendra pourquoi les cercles "catalogués" sont souvent construits à partir de points remarquables s'un triangle. Les mathématiciens ont eu le temps d'en répertorier des milliers au cours de la longue histoire de cette figure mythique.

Le cercle inscrit dans un triangle / Quand on ne peut plus dire "Neuf points, c'est tout" / Le théorème des sept cercles / Le cercle osculateur / La formule de Brahmagupta / Les cercles de Villarceau / Le théorème du pivot

Dossier 3 : Droites et cercles

De nature apparemment différente, la droite et le cercle entretiennent des relations privilégiées. Comment tracer un cercle? Que nous apprend le cinquième postulat d'Euclide? Comment couper équitablement une pizza ? Si l'on sait tracer une droite sur un écran d'ordinateur, sait-on pour autant tracer un cercle?

Point(s) trop n'en faut / Des étoiles et des ronds / Tracé : de la droite au cercle / Enquête sur la lunule / Parts de pizza équitables / Contre l'aversion de l'inversion

Dossier 4 : Le cercle dans toutes ses dimensions

Des cercles aux formes inhabituelles en passant par les dimensions supérieures, petit tour d'horizon de variations autour du cercle. En général, elles donnent lieu à de remarquables représentation visuelles.

Les cercles du tore / Petit tour en polygonie / Les cercles de Manhattan / Le disque de Poincaré / Les fibrations de Hopf

Et toujours

Le cercle dans l'art - quand la quadrature du cercle … est possible! - le who's who des cercles - en bref - problèmes - solutions des problèmes

Note de lecture Tangente

La perfection faite courbe


 Dans cet ouvrage, le cercle, figure fondamentale de la géométrie, est étudié sous toutes ses formes : historique, artistique, et, naturellement mathématique. Etudiés depuis l’Antiquité, ils n’ont toujours pas livré tous leurs mystères et interviennent dans les mathématiques les plus actuelles.

Entre eux ou associés à d’autres figures, les cercles sont sources d’innombrables et fascinantes propriétés que cet ouvrage tente de révéler au plus grand nombre.

Voici les principaux thèmes abordés dans les quatre parties :

 Cercles entre eux

La mesure du cercle - Cercles : des courbes qui ne manquent pas d’aire - Le cercle trigonométrique - Les faisceaux de cercles - Faire le tour du cercle - Le problème de Napoléon

 

Catalogue de cercles

Who’s who des cercles - Le cercle inscrit dans un triangle - Le théorème des sept cercles - Les cercles du tore - Les cercles de Manhattan - Le cercle osculateur - La formule de Brahmagupta - Le théorème du pivot de Miquel - Les cercles de Villarceau

 

Droites et cercles

Tracé d’un cercle - Tracé : de la droite au cercle - La quadrature de la lunule - L’inversion (FL) –

 

Passerelles

Le cercle dans l’art – La symbolique du cercle - Une quête millénaire : la quadrature du cercle - Espaces cerclés - Tracer des figures à la règle et au compas, au compas seul - L’invention de la roue – La symbolique du cercle - Jeux –